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Abstract: Innovations in machine learning have stimulated extensive research interests in applied 

computational intelligence in the backdrop of enormous amounts of data generated in different fields of 

applications. By its nature, such data is overwhelming and mostly go to waste due to capacity and scale 

restrictions of traditional statistical data modeling as well as legacy machine learning techniques. The 

specialized area of deep machine learning potentially holds the key for unlocking the door to modern applied 

computational intelligence. Presently, it is becoming progressively possible to process great amounts of data 

whether static or arriving in streams of varying velocities using deep learning models. The applications are 

innumerably many ranging from time series data modeling; signal processing, image analysis, natural 

language processing to object recognition among others. The critical area of predictive data modeling requires 

efficient and carefully selected algorithms and models for effective and accurate predictions.  In this paper, 

we present a novel deep machine learning Neural Network for predictive modeling based on a fixed size 

window of time steps, tested on a well-known dataset on customer arrivals to an airline. At the core of the 

architecture is a Multi-Layer Perceptron – a classical deep learning Neural Network optimized on a number 

of dimensions that include the training algorithm, batch size, number of iterations, and the loss function among 

others.  

Findings: Taking the square root of the performance scores we can see the average error on the training 

dataset was 22 passengers (in thousands per month) and the average error on the unseen test set was 46 

passengers (in thousands per month). In this research, we have demonstrated the applicability of a typical 

neural network with parameter tuning to the problem of sequence data modeling. It is clear from the results 

above that it performs well on both the training and the testing datasets with minimal error rates. It is therefore 

imperative to conclude that basic neural networks such as MLP can perform equally as well as advanced 

neural networks such as RNNs, CNNs, Boltzman Machines among others with careful fine tuning, optimization, 

parameter search and pre-processing steps. 

 Keywords: Predictive Modeling, Time Series Analysis, Multi-Layer Perceptron, Deep Learning Optimization, 

Fixed Window  

1. INTRODUCTION  

The sub-field of Deep Machine Learning (DML) in the larger field of Artificial Intelligence (AI) undoubtedly 

holds the key to solve some of the classical computational problems in natural language understanding, image 

analysis, signal processing, computer vision, navigation; tasks that traditionally have been considered difficult 

(Thiyanga S., Rob J., & Athanasopoulos G., 2018). It has been made progressively possible to train larger and 
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larger computational models within short times, with ease and utilizing minimal computational resources of 

memory and bandwidth (Josh P., & Adam G., 2016). 

Rooted in computational statistics and relying heavily on the efficiency of numerical algorithms and Deep 

Neural Networks (DNNs), DML techniques capitalize on the world's increasingly powerful computing 

platforms and the availability of datasets of immense size to analyze and give solutions to problems where 

recommendation approaches fail (Schmidhuber, 2012; LeCun Y., Bengio Y., and Hinton G., 2015).  

DML is primarily an optimization procedure (Ngiam J., Coates A., Lahiri A., Prochnow B., Le Q. V., and Ng 

A. Y., 2011; Bottou L., Curtis F. E., and Nocedal J., 2017; Vankadara L. C., 2015) - which, in this context, 

involves the numerical computation of parameters for a system designed to make optimal decisions based on 

yet unseen data by choosing parameters that exhibit the best values with respect to a given learning problem. 

Typically, these tasks are characterized by large amounts of training data, high dimensionality, ill-conditioning 

that require extensively many cycles of computing power (Minal P., Sanjay C., & Sanjay G., 2016).  

2. RELATED RESEARCH 

2.1 Introduction 

Most work using ANN to manipulate Time-Series data focuses on modeling and forecasting. This section 

reports on a selected number especially in regression modeling of time series data to rightfully place this work 

in context. 

2.2 Regression with Time Steps 

Some sequence problems may have a varied number of time steps per sample. For example, we may have 

measurements of a physical machine leading up to a point of failure or a point of surge. Each incident would 

be a sample and the observations that lead up to the event would be the time steps, while the variables observed 

would be the features. Time steps provide one way to phrase time series problems. Instead of phrasing the past 

observations as separate input features, we can use them as time steps of the one input feature. This technique 

is especially required by most stateful Neural Networks such as the Recurrent Neural Network (CNN), the 

Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU).  

     2.3 Regression with Memory between Batches 

The stateful networks have memory, giving them the ability to remember across long sequences. Typically, 

the state within the network is reset after each training batch when fitting the model, as well as during prediction 

and evaluation. This means that the network can build state over the entire training sequence and even maintain 

that state if needed to make predictions providing us with finer control over the internal state (Aistis R, & 

Mockus J., 1999). 

One of the requirements for this approach is that the training data should not be shuffled when fitting the 

network. It also requires explicit resetting of the network state after each exposure to the training data (epoch). 

Finally, when the network layer is constructed, the stateful parameter must be set true and instead of specifying 

the input dimensions, we must hard code the number of samples in a batch, number of time steps in a sample 

and number of features in a time step by setting the batch input shape parameter.  

      2.4 The window Method 

In the window method, a time series problem is framed so that a selected number of recent time steps are used 

to make the prediction for the next time step. In this case the size of the window is a parameter that is often 
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tuned for each problem. For instance, given the current time (t) we may desire to predict the value at the next 

time in the sequence i.e. (t + 1), by relying on the current time (t) as well as a selected number previous time 

steps, say (t-1, t-2, …,t-N) for an N-size window. Phrased as a regression problem the input variables would 

be t-N,.., t-2, t-1, t and the output variable would be t+1 (Tamal D., & Indranil G.., 2016). 

     2.5 Optimization for Regression Modeling 

Optimization problems in machine learning arise through the definition of prediction and loss functions that 

appear in measures of expected and empirical risk that one aims to minimize. There are two varieties of 

optimization problems that arise in machine learning: the first involves convex optimization problems, derived 

from the use of logistic regression or support vector machines, while the second typically involves highly 

complex and problems with non-convex error functions, derived from the use of deep neural networks. Deep 

Neural Networks are trained using the Backpropagation Algorithm (Ngiam J., Coates A., Lahiri A., Prochnow 

B., Le Q. V., and Ng A. Y., 2011) – especially the Back Propagation Through Time (BPTT) which is 

numerically formulated as a highly non-convex optimization problem in a very high dimensional feature space.  

However, the training process requires extreme skill and care. For instance, it is crucial to initialize the 

optimization process with a good starting point through parameter tuning and to monitor its progress while 

correcting conditioning issues as they appear (Josh P., & Adam G., (2016). A great deal of these successes lies 

in the choice, regularization of the training algorithm as well as the domain of application (Bao W., Yue J., 

Rao Y., 2017). 

Unfortunately, attempts to optimize these models such as increasing model size and training data - which is 

necessary for good prediction accuracy on complex tasks, requires significant amount of computing cycles 

proportional to the product of model size and training data volume. Due to the computational requirements of 

deep learning almost all deep models are trained on Graphic Processing Units (GPUs) (Nikhil J., Abhinav B., 

Sam W., Todd G., & Laxmikant V. K., 2016). According to Schmidhuber J., (2015) and LeCun Y., et al., 

(2015), the tremendous success of Deep Neural Networks (DNNs), in a wide range of practically relevant 

applications has triggered a race to build larger and larger DNNs (Zheng S. and Kwok J. T., 2017), which need 

to be trained with more and more data, to solve learning problems in fast extending fields of applications.  

Optimization methods for machine learning fall into two broad categories namely First Order (1st Order) and 

Second Order (2nd Order). Of the 1st Order methods, the stochastic and batch techniques are key. The 

prototypical stochastic optimization method is the Stochastic Gradient Method (SGD) where the target value 

is chosen randomly from a set of target values [1..N] in a positive step-size (Bottou L., 2010; Bengio Y., 2012 

& Josh P., et al. 2016). Each iteration of this method is thus very cheap, involving only the computation of the 

gradient corresponding to one sample. Similarly, due to the sum structure of the empirical risk, a batch method 

can easily benefit from parallelization since the bulk of the computation lies in evaluations of empirical risk 

and its gradient. Further, calculations of these quantities can even be done in a distributed manner.  

         2.6 Use of the Multi-Layer Perceptron 

The experiments were conducted using a fully connected Multi Layer Percentron (MLP) of three (3) input 

layers optimized using dropout at each layer’s input to improve the generalization capability and its potential 

non-linearity addressed by the rectified linear activation unit (ReLU). The latter has the effect of preventing 

saturation of the gradient when the network becomes very deep. The last layer of the network uses a softmax 

function whose basic layer block is formalized as 

x’=fdropout.p(x) 
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y = W.x’+b   (1) 

h = ReLU(y) 

ReLU helps to stack the networks deeper and dropout largely prevent the co-adaption of the neurons to help 

the model generalize well especially on some small datasets. However, if the network is too deep, most neuron 

will hibernate as the ReLU totally halve the negative part. The dropout rates at the input layer, hidden layers 

and the softmax layer were varied as {0.1, 0.2, 0.3}, respectively as seen in figure 1 below 

 

Figure 1: Multi-Layer Perceptron (MLP) 

3. EXPERIMENT & RESULTS 

3.1 Introduction 

In this section we present the experimental setup that includes the problem definition, the dataset, the DML 

platform of choice, the results as well as their comparative analysis. 

3.2  Problem Definition 

The DML problem selected for this study is a typical regression scenario of time series data representing the 

number of airline passengers arriving at an international airport. This is a prediction problem where given a 

year and a month, the task is to predict the number of international airline passengers in units of 1,000 collected 

over a period of 144 months. The time series prediction is phrased as a regression problem where given the 

number of passengers (in units of thousands) this month, last month and previous months, what is the number 

of passengers next month. 

The initial pre-processing step is to convert the given dataset into the required window of several months in 

the past. For purposes of the experiment, a window of three (3) months was selected as it was found to optimize 

the results. In this regard, the first column contains two months’ (t-3) passenger count before the current month. 

Subsequently, t-2, t-1 and t represent the remaining window period up to the present month. The next month’s 

(t+1) passenger count, is the target prediction. 

3.3 Dataset 

The dataset is available for free from the DataMarket webpage as a .CSV downloadable file with the filename 

“international-airline-passengers.csv”. 

3.4 Deep Learning Platform 

The selected development platform consisted of a set of Python DML libraries and frameworks available for 

the experiment under the permissive MIT license namely: Keras and Tensorflow. Tensorflow is one of the two 

numerical backend platforms in Python that provide the basis for Deep Learning research and development. 

Keras runs on Python 2.7 or 3.5 and can seamlessly execute on GPUs and CPUs based on available hardware 

the underlying frameworks.  
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3.5 Experiment 

The time series problem was phrased as a regression problem with a window size of three (3) recent time steps 

that were used to make the prediction for the next time step given the current time step. In this case the input 

variables are t-3, t-2, t-1, t and the output variable is t+1. 

The code below was used import all of the functions and classes used to model this problem in the Science 

Python (SciPy) environment within the Keras deep learning library. 

# Multilayer Perceptron to Predict International Airline Passengers (t+1, given t, t-1, t-2) 

import numpy 

import matplotlib.pyplot as plt 

import matplotlib.pyplot as plt1 

import matplotlib.pyplot as plt2 

import matplotlib.pyplot as plt4 

import pandas 

import math 

from keras.models import Sequential 

from keras.layers import Dense #Default MLP Neural Network 

Algorithm 1: Importing Libraries 

With time series data, the sequence of values is important. The method that was used for purposes of stratified 

cross validation was to split the ordered dataset into train and test datasets. This was necessary in order get an 

idea of the skill of the model on new unseen data. The code below was used to calculate the index of the split 

point and separates the data into the training dataset with two thirds (2/3) or roughly 67% of the available 

observations used to train the model, leaving the remaining a third (1/3) or roughly 33% for testing the model. 

# split into train and test sets 

size_Train = int(len(dataset) * 0.67) 

size_Test = len(dataset) - size_Train 

train_Set, test_Set = dataset[0:size_Train,:], dataset[size_Train:len(dataset),:] 

Algorithm 2: Calculating Index of split point 

Next a function to create a new dataset was defined in accordance with the window size as described above. 

The function takes two arguments, the dataset which is a Python Number array that we want to convert into a 

dataset and the look back which is the number of previous time steps to use as input variables to predict the 

next time period. 

This has the role to create a dataset where X is the number of passengers at a given time (t) and Y is the number 

of passengers at the next time (t + 1). The value of the look back argument was set to three (3) to conform to 

the selected window size. 

A sample of the dataset with this formulation looks as follows: 
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# convert an array of values into a dataset matrix 

def create_dataset(dataset, look_back=1): 

 inputX, OutputY = [], [] 

 for i in range(len(dataset)-look_back-1): 

 a = dataset[i:(i+look_back), 0] 

 inputX.append(a) 

OutputY.append(dataset[i + look_back, 0]) 

return numpy.array(inputX), numpy.array(OutputY) 

Algorithm 3: Creating a new dataset 

This function was applied to reshape the datasets by overriding the default look back value with the window 

size as below. 

# reshape dataset 

look_back = 3 

trainX, trainY = create_dataset(train_Set, look_back) 

testX, testY = create_dataset(test_Set, look_back) 

Algorithm 4: Reshaping the datasets 

The effect of this function on the first few rows of the dataset are seen in table 1 below. 

Table 1: Reshaped Dataset 

 

S/No X3 X2 X1 X Y 

1 112 118 132 129 121 

2 118 132 129 121 135 

3 132 129 121 135 148 

4 129 121 135 148 148 
 

Comparing these first 4 rows to the original dataset sample listed in the previous section, the X=t and Y=t+1 

pattern in the numbers is clearly visible. The parameters that were found to optimize the network capacity are 

a hidden layer of 14 neurons, a second hidden layer of 8 neurons, 1 output layer of neurons, 300 epochs, a 

batch size of size 2 as indicated by the algorithm below: 

# create and fit Multilayer Perceptron model 

model = Sequential() 

model.add(Dense(8, input_dim=look_back, activation='relu')) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 
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model.fit(trainX, trainY, epochs=300, batch_size=2, verbose=2) 

Algorithm 5: Setting parameters 

Once the model is fitted, the subsequent activity is to estimate its performance on the train and test datasets. 

The role of this is to provide a point of reference when comparing new models. The technique applied was the 

Mean Squared Error (MSE) and the Root Mean Squared Error (RMSE) as illustrated in the code below. 

# Estimate model performance 

trainScore = model.evaluate(trainX, trainY, verbose=0) 

percTr = (1000.0-(math.sqrt(trainScore)))/10 

print('Train Score: %.2f MSE (%.2f RMSE) Accuracy %.2f %%' % (trainScore, math.sqrt(trainScore), percTr)) 

Algorithm 6: RMSE 

Finally, predictions were generated using the model for both the train and test datasets to get a visual indication 

of the skill of the model. Once prepared, the results were plotted, showing the original dataset in figure 2, 

predictions on training and test sets in figure 3 and figure 4 respectively. Subsequently the combined data is 

shown in figure 5 below. The code that produces these statistical results is shown below 

# plot Combined Graphs 

plt4.plot(dataset, color="green", label="dataset") 

plt4.plot(trainPredictPlot, color="blue", label="train") 

plt4.plot(testPredictPlot, label="test", color="red") 

plt4.title("Combined Graphs", color="magenta") 

plt4.xlabel("months", color="blue") 

plt4.ylabel("passengers in '000s", color="green") 

plt4.legend() 

plt4.show() 

 Algorithm 6: Output predictions 

3.6 Results and Analysis 

The extract of five rows of summary statistics based on the 300 epochs as well as the MSE and RMSE values 

are indicated below: 

 Epoch 296/300 

92/92 [========- 0s 544us/step - loss: 500.0288 

Epoch 297/300 

92/92 [========- 0s 544us/step - loss: 533.4240 

Epoch 298/300 

92/92 [=======    0s 544us/step - loss: 504.7706 
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Epoch 299/300 

92/92 [========  0s 489us/step - loss: 505.2075 

Epoch 300/300 

92/92 [========  0s 544us/step - loss: 498.6430 

 

Train Score: 487.92 MSE (22.09 RMSE) Acc: 97.79 % 

Test Score: 2135.39 MSE (46.21 RMSE) Acc: 95.38 % 

 

 

Figure 2: Baseline Data 

 

Figure 3: Training set Predictions 



International Journal of Social Sciences and Information Technology 

ISSN 2412-0294 

Vol V Issue X, December 2020    

© Ireri, Kirori                                                      41   

 

Figure 4: Testing set Prediction 

 

Figure 5: Combined Predictions 

4. SUMMARY 

4.1 Conclusion 

In this research, we have demonstrated the applicability of a typical neural network with parameter tuning to 

the problem of sequence data modeling. It is clear from the results above that it performs well on both the 

training and the testing datasets with minimal error rates. It is therefore imperative to conclude that basic neural 

networks such as MLP can perform equally as well as advanced neural networks such as RNNs, CNNs, 

Boltzman Machines among others with careful fine tuning, optimization, parameter search and pre-processing 

steps. 

4.2 Future Work 

The future work should center around 1) comparative analysis with other neural models 2) experimentation 

with different training algorithms beyond adaptive moment (ADAM) 3) automatic hyper-parameter search 

using grid search procedures 4) experimentation with different window sizes and 5) considering additional 

tests on varied time variant data sets. 
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