
http://www.ijssit.com

© Ireri, Kirori 33

AN ARCHITECTURAL FRAMEWORK FOR TRAINING DEEP NEURAL NETWORKS FOR

PREDICTIVE TASK MODELING

1* Edwin Ireri

eireri@kyu.ac.ke

2** Zachary Kirori

zkirori@kyu.ac.ke

1,2 Kirinyaga University, Kenya

Abstract: Innovations in machine learning have stimulated extensive research interests in applied

computational intelligence in the backdrop of enormous amounts of data generated in different fields of

applications. By its nature, such data is overwhelming and mostly go to waste due to capacity and scale

restrictions of traditional statistical data modeling as well as legacy machine learning techniques. The

specialized area of deep machine learning potentially holds the key for unlocking the door to modern applied

computational intelligence. Presently, it is becoming progressively possible to process great amounts of data

whether static or arriving in streams of varying velocities using deep learning models. The applications are

innumerably many ranging from time series data modeling; signal processing, image analysis, natural

language processing to object recognition among others. The critical area of predictive data modeling requires

efficient and carefully selected algorithms and models for effective and accurate predictions. In this paper,

we present a novel deep machine learning Neural Network for predictive modeling based on a fixed size

window of time steps, tested on a well-known dataset on customer arrivals to an airline. At the core of the

architecture is a Multi-Layer Perceptron – a classical deep learning Neural Network optimized on a number

of dimensions that include the training algorithm, batch size, number of iterations, and the loss function among

others.

Findings: Taking the square root of the performance scores we can see the average error on the training

dataset was 22 passengers (in thousands per month) and the average error on the unseen test set was 46

passengers (in thousands per month). In this research, we have demonstrated the applicability of a typical

neural network with parameter tuning to the problem of sequence data modeling. It is clear from the results

above that it performs well on both the training and the testing datasets with minimal error rates. It is therefore

imperative to conclude that basic neural networks such as MLP can perform equally as well as advanced

neural networks such as RNNs, CNNs, Boltzman Machines among others with careful fine tuning, optimization,

parameter search and pre-processing steps.

 Keywords: Predictive Modeling, Time Series Analysis, Multi-Layer Perceptron, Deep Learning Optimization,

Fixed Window

1. INTRODUCTION

The sub-field of Deep Machine Learning (DML) in the larger field of Artificial Intelligence (AI) undoubtedly

holds the key to solve some of the classical computational problems in natural language understanding, image

analysis, signal processing, computer vision, navigation; tasks that traditionally have been considered difficult

(Thiyanga S., Rob J., & Athanasopoulos G., 2018). It has been made progressively possible to train larger and

http://www.ijssit.com/

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue X, December 2020

© Ireri, Kirori 34

larger computational models within short times, with ease and utilizing minimal computational resources of

memory and bandwidth (Josh P., & Adam G., 2016).

Rooted in computational statistics and relying heavily on the efficiency of numerical algorithms and Deep

Neural Networks (DNNs), DML techniques capitalize on the world's increasingly powerful computing

platforms and the availability of datasets of immense size to analyze and give solutions to problems where

recommendation approaches fail (Schmidhuber, 2012; LeCun Y., Bengio Y., and Hinton G., 2015).

DML is primarily an optimization procedure (Ngiam J., Coates A., Lahiri A., Prochnow B., Le Q. V., and Ng

A. Y., 2011; Bottou L., Curtis F. E., and Nocedal J., 2017; Vankadara L. C., 2015) - which, in this context,

involves the numerical computation of parameters for a system designed to make optimal decisions based on

yet unseen data by choosing parameters that exhibit the best values with respect to a given learning problem.

Typically, these tasks are characterized by large amounts of training data, high dimensionality, ill-conditioning

that require extensively many cycles of computing power (Minal P., Sanjay C., & Sanjay G., 2016).

2. RELATED RESEARCH

2.1 Introduction

Most work using ANN to manipulate Time-Series data focuses on modeling and forecasting. This section

reports on a selected number especially in regression modeling of time series data to rightfully place this work

in context.

2.2 Regression with Time Steps

Some sequence problems may have a varied number of time steps per sample. For example, we may have

measurements of a physical machine leading up to a point of failure or a point of surge. Each incident would

be a sample and the observations that lead up to the event would be the time steps, while the variables observed

would be the features. Time steps provide one way to phrase time series problems. Instead of phrasing the past

observations as separate input features, we can use them as time steps of the one input feature. This technique

is especially required by most stateful Neural Networks such as the Recurrent Neural Network (CNN), the

Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU).

 2.3 Regression with Memory between Batches

The stateful networks have memory, giving them the ability to remember across long sequences. Typically,

the state within the network is reset after each training batch when fitting the model, as well as during prediction

and evaluation. This means that the network can build state over the entire training sequence and even maintain

that state if needed to make predictions providing us with finer control over the internal state (Aistis R, &

Mockus J., 1999).

One of the requirements for this approach is that the training data should not be shuffled when fitting the

network. It also requires explicit resetting of the network state after each exposure to the training data (epoch).

Finally, when the network layer is constructed, the stateful parameter must be set true and instead of specifying

the input dimensions, we must hard code the number of samples in a batch, number of time steps in a sample

and number of features in a time step by setting the batch input shape parameter.

 2.4 The window Method

In the window method, a time series problem is framed so that a selected number of recent time steps are used

to make the prediction for the next time step. In this case the size of the window is a parameter that is often

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue X, December 2020

© Ireri, Kirori 35

tuned for each problem. For instance, given the current time (t) we may desire to predict the value at the next

time in the sequence i.e. (t + 1), by relying on the current time (t) as well as a selected number previous time

steps, say (t-1, t-2, …,t-N) for an N-size window. Phrased as a regression problem the input variables would

be t-N,.., t-2, t-1, t and the output variable would be t+1 (Tamal D., & Indranil G.., 2016).

 2.5 Optimization for Regression Modeling

Optimization problems in machine learning arise through the definition of prediction and loss functions that

appear in measures of expected and empirical risk that one aims to minimize. There are two varieties of

optimization problems that arise in machine learning: the first involves convex optimization problems, derived

from the use of logistic regression or support vector machines, while the second typically involves highly

complex and problems with non-convex error functions, derived from the use of deep neural networks. Deep

Neural Networks are trained using the Backpropagation Algorithm (Ngiam J., Coates A., Lahiri A., Prochnow

B., Le Q. V., and Ng A. Y., 2011) – especially the Back Propagation Through Time (BPTT) which is

numerically formulated as a highly non-convex optimization problem in a very high dimensional feature space.

However, the training process requires extreme skill and care. For instance, it is crucial to initialize the

optimization process with a good starting point through parameter tuning and to monitor its progress while

correcting conditioning issues as they appear (Josh P., & Adam G., (2016). A great deal of these successes lies

in the choice, regularization of the training algorithm as well as the domain of application (Bao W., Yue J.,

Rao Y., 2017).

Unfortunately, attempts to optimize these models such as increasing model size and training data - which is

necessary for good prediction accuracy on complex tasks, requires significant amount of computing cycles

proportional to the product of model size and training data volume. Due to the computational requirements of

deep learning almost all deep models are trained on Graphic Processing Units (GPUs) (Nikhil J., Abhinav B.,

Sam W., Todd G., & Laxmikant V. K., 2016). According to Schmidhuber J., (2015) and LeCun Y., et al.,

(2015), the tremendous success of Deep Neural Networks (DNNs), in a wide range of practically relevant

applications has triggered a race to build larger and larger DNNs (Zheng S. and Kwok J. T., 2017), which need

to be trained with more and more data, to solve learning problems in fast extending fields of applications.

Optimization methods for machine learning fall into two broad categories namely First Order (1st Order) and

Second Order (2nd Order). Of the 1st Order methods, the stochastic and batch techniques are key. The

prototypical stochastic optimization method is the Stochastic Gradient Method (SGD) where the target value

is chosen randomly from a set of target values [1..N] in a positive step-size (Bottou L., 2010; Bengio Y., 2012

& Josh P., et al. 2016). Each iteration of this method is thus very cheap, involving only the computation of the

gradient corresponding to one sample. Similarly, due to the sum structure of the empirical risk, a batch method

can easily benefit from parallelization since the bulk of the computation lies in evaluations of empirical risk

and its gradient. Further, calculations of these quantities can even be done in a distributed manner.

 2.6 Use of the Multi-Layer Perceptron

The experiments were conducted using a fully connected Multi Layer Percentron (MLP) of three (3) input

layers optimized using dropout at each layer’s input to improve the generalization capability and its potential

non-linearity addressed by the rectified linear activation unit (ReLU). The latter has the effect of preventing

saturation of the gradient when the network becomes very deep. The last layer of the network uses a softmax

function whose basic layer block is formalized as

x’=fdropout.p(x)

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue X, December 2020

© Ireri, Kirori 36

y = W.x’+b (1)

h = ReLU(y)

ReLU helps to stack the networks deeper and dropout largely prevent the co-adaption of the neurons to help

the model generalize well especially on some small datasets. However, if the network is too deep, most neuron

will hibernate as the ReLU totally halve the negative part. The dropout rates at the input layer, hidden layers

and the softmax layer were varied as {0.1, 0.2, 0.3}, respectively as seen in figure 1 below

Figure 1: Multi-Layer Perceptron (MLP)

3. EXPERIMENT & RESULTS

3.1 Introduction

In this section we present the experimental setup that includes the problem definition, the dataset, the DML

platform of choice, the results as well as their comparative analysis.

3.2 Problem Definition

The DML problem selected for this study is a typical regression scenario of time series data representing the

number of airline passengers arriving at an international airport. This is a prediction problem where given a

year and a month, the task is to predict the number of international airline passengers in units of 1,000 collected

over a period of 144 months. The time series prediction is phrased as a regression problem where given the

number of passengers (in units of thousands) this month, last month and previous months, what is the number

of passengers next month.

The initial pre-processing step is to convert the given dataset into the required window of several months in

the past. For purposes of the experiment, a window of three (3) months was selected as it was found to optimize

the results. In this regard, the first column contains two months’ (t-3) passenger count before the current month.

Subsequently, t-2, t-1 and t represent the remaining window period up to the present month. The next month’s

(t+1) passenger count, is the target prediction.

3.3 Dataset

The dataset is available for free from the DataMarket webpage as a .CSV downloadable file with the filename

“international-airline-passengers.csv”.

3.4 Deep Learning Platform

The selected development platform consisted of a set of Python DML libraries and frameworks available for

the experiment under the permissive MIT license namely: Keras and Tensorflow. Tensorflow is one of the two

numerical backend platforms in Python that provide the basis for Deep Learning research and development.

Keras runs on Python 2.7 or 3.5 and can seamlessly execute on GPUs and CPUs based on available hardware

the underlying frameworks.

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue X, December 2020

© Ireri, Kirori 37

3.5 Experiment

The time series problem was phrased as a regression problem with a window size of three (3) recent time steps

that were used to make the prediction for the next time step given the current time step. In this case the input

variables are t-3, t-2, t-1, t and the output variable is t+1.

The code below was used import all of the functions and classes used to model this problem in the Science

Python (SciPy) environment within the Keras deep learning library.

Multilayer Perceptron to Predict International Airline Passengers (t+1, given t, t-1, t-2)

import numpy

import matplotlib.pyplot as plt

import matplotlib.pyplot as plt1

import matplotlib.pyplot as plt2

import matplotlib.pyplot as plt4

import pandas

import math

from keras.models import Sequential

from keras.layers import Dense #Default MLP Neural Network

Algorithm 1: Importing Libraries

With time series data, the sequence of values is important. The method that was used for purposes of stratified

cross validation was to split the ordered dataset into train and test datasets. This was necessary in order get an

idea of the skill of the model on new unseen data. The code below was used to calculate the index of the split

point and separates the data into the training dataset with two thirds (2/3) or roughly 67% of the available

observations used to train the model, leaving the remaining a third (1/3) or roughly 33% for testing the model.

split into train and test sets

size_Train = int(len(dataset) * 0.67)

size_Test = len(dataset) - size_Train

train_Set, test_Set = dataset[0:size_Train,:], dataset[size_Train:len(dataset),:]

Algorithm 2: Calculating Index of split point

Next a function to create a new dataset was defined in accordance with the window size as described above.

The function takes two arguments, the dataset which is a Python Number array that we want to convert into a

dataset and the look back which is the number of previous time steps to use as input variables to predict the

next time period.

This has the role to create a dataset where X is the number of passengers at a given time (t) and Y is the number

of passengers at the next time (t + 1). The value of the look back argument was set to three (3) to conform to

the selected window size.

A sample of the dataset with this formulation looks as follows:

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue X, December 2020

© Ireri, Kirori 38

convert an array of values into a dataset matrix

def create_dataset(dataset, look_back=1):

 inputX, OutputY = [], []

 for i in range(len(dataset)-look_back-1):

 a = dataset[i:(i+look_back), 0]

 inputX.append(a)

OutputY.append(dataset[i + look_back, 0])

return numpy.array(inputX), numpy.array(OutputY)

Algorithm 3: Creating a new dataset

This function was applied to reshape the datasets by overriding the default look back value with the window

size as below.

reshape dataset

look_back = 3

trainX, trainY = create_dataset(train_Set, look_back)

testX, testY = create_dataset(test_Set, look_back)

Algorithm 4: Reshaping the datasets

The effect of this function on the first few rows of the dataset are seen in table 1 below.

Table 1: Reshaped Dataset

S/No X3 X2 X1 X Y

1 112 118 132 129 121

2 118 132 129 121 135

3 132 129 121 135 148

4 129 121 135 148 148

Comparing these first 4 rows to the original dataset sample listed in the previous section, the X=t and Y=t+1

pattern in the numbers is clearly visible. The parameters that were found to optimize the network capacity are

a hidden layer of 14 neurons, a second hidden layer of 8 neurons, 1 output layer of neurons, 300 epochs, a

batch size of size 2 as indicated by the algorithm below:

create and fit Multilayer Perceptron model

model = Sequential()

model.add(Dense(8, input_dim=look_back, activation='relu'))

model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue X, December 2020

© Ireri, Kirori 39

model.fit(trainX, trainY, epochs=300, batch_size=2, verbose=2)

Algorithm 5: Setting parameters

Once the model is fitted, the subsequent activity is to estimate its performance on the train and test datasets.

The role of this is to provide a point of reference when comparing new models. The technique applied was the

Mean Squared Error (MSE) and the Root Mean Squared Error (RMSE) as illustrated in the code below.

Estimate model performance

trainScore = model.evaluate(trainX, trainY, verbose=0)

percTr = (1000.0-(math.sqrt(trainScore)))/10

print('Train Score: %.2f MSE (%.2f RMSE) Accuracy %.2f %%' % (trainScore, math.sqrt(trainScore), percTr))

Algorithm 6: RMSE

Finally, predictions were generated using the model for both the train and test datasets to get a visual indication

of the skill of the model. Once prepared, the results were plotted, showing the original dataset in figure 2,

predictions on training and test sets in figure 3 and figure 4 respectively. Subsequently the combined data is

shown in figure 5 below. The code that produces these statistical results is shown below

plot Combined Graphs

plt4.plot(dataset, color="green", label="dataset")

plt4.plot(trainPredictPlot, color="blue", label="train")

plt4.plot(testPredictPlot, label="test", color="red")

plt4.title("Combined Graphs", color="magenta")

plt4.xlabel("months", color="blue")

plt4.ylabel("passengers in '000s", color="green")

plt4.legend()

plt4.show()

 Algorithm 6: Output predictions

3.6 Results and Analysis

The extract of five rows of summary statistics based on the 300 epochs as well as the MSE and RMSE values

are indicated below:

 Epoch 296/300

92/92 [========- 0s 544us/step - loss: 500.0288

Epoch 297/300

92/92 [========- 0s 544us/step - loss: 533.4240

Epoch 298/300

92/92 [======= 0s 544us/step - loss: 504.7706

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue X, December 2020

© Ireri, Kirori 40

Epoch 299/300

92/92 [======== 0s 489us/step - loss: 505.2075

Epoch 300/300

92/92 [======== 0s 544us/step - loss: 498.6430

Train Score: 487.92 MSE (22.09 RMSE) Acc: 97.79 %

Test Score: 2135.39 MSE (46.21 RMSE) Acc: 95.38 %

Figure 2: Baseline Data

Figure 3: Training set Predictions

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue X, December 2020

© Ireri, Kirori 41

Figure 4: Testing set Prediction

Figure 5: Combined Predictions

4. SUMMARY

4.1 Conclusion

In this research, we have demonstrated the applicability of a typical neural network with parameter tuning to

the problem of sequence data modeling. It is clear from the results above that it performs well on both the

training and the testing datasets with minimal error rates. It is therefore imperative to conclude that basic neural

networks such as MLP can perform equally as well as advanced neural networks such as RNNs, CNNs,

Boltzman Machines among others with careful fine tuning, optimization, parameter search and pre-processing

steps.

4.2 Future Work

The future work should center around 1) comparative analysis with other neural models 2) experimentation

with different training algorithms beyond adaptive moment (ADAM) 3) automatic hyper-parameter search

using grid search procedures 4) experimentation with different window sizes and 5) considering additional

tests on varied time variant data sets.

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue X, December 2020

© Ireri, Kirori 42

References

Aistis Raudys, Jonas Mockus. Comparison of ARMA and Multilayer Perceptron Based Methods for Economic

Time Series Forecasting. Informatica, 1999, Vol. 10, No. 2, 231–244

Bao W, Yue J, Rao Y (2017) A deep learning framework for financial time series using stacked autoencoders

and long-short term memory. PLoS ONE 12(7): e0180944.

https://doi.org/10.1371/journal.pone.0180944

Bengio Y., (2012). Practical Recommendations for Gradient-Based Training of Deep Architectures,

arXiv:1206.5533v2

Bottou L., Curtis F. E., and Nocedal J., (2017). Optimization Methods for Large-Scale Machine Learning,

arXiv:1606.04838v2 [stat.ML]

Cong Feng, Mingjian Cui, Bri-Mathias Hodge, Jie Zhang. (2017). A data-driven multi-model methodology

with deep feature selection for short-term wind forecasting. In the Journal of Applied Energy.

Retrieved: www.elsevier.com/locate/apenergy

LeCun Y., Bengio Y., & Hinton G., (2015). Deep learning: Nature, International journal of science,

521(7553):436–444

Minal Patel, Sanjay Chaudhary, and Sanjay Garg. (2016). Machine Learning Based Statistical Prediction

Model for Improving Performance of Live Virtual Machine Migration. Hindawi Publishing

Corporation. Journal of Engineering.

Ngiam J., Lee V. C., Coates A. and Lahiri A., (2011). On Optimization Methods for Deep Learning. In

Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA.

Nikhil J., Abhinav B., Sam W., Todd G., and Laxmikant V. K., (2016). Evaluating HPC Networks via Simulation

of Parallel Workloads

Schmidhuber J., (2015). Deep learning in neural networks: An overview, Neural Networks, vol 61 pp. 85–117

Tamal Datta Chaudhuri, Indranil Ghosh. (2016). Artificial Neural Network and Time Series Modeling Based

Approach to Forecasting the Exchange Rate in a Multivariate Framework. Journal of Insurance and

Financial Management, Vol. 1, Issue 5, 92-123

Thiyanga S Talagala, Rob J Hyndman and George Athanasopoulos. (2018). Meta-learning how to forecast

time series. Working paper. Retrieved: http://business.monash.edu/econometrics-and-

businessstatistics/research/publications

Zhiguang Wang, Weizhong Yan. (2016). Time Series Classification from Scratch with Deep Neural Networks:

A Strong Baseline

