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Abstract: Deep Machine Learning takes place by adjusting the weights of deep neural networks – brain-like 

computational structures in order to optimize a given cost function. There exists a deep learning task where 

every neural model typically performs better. This paper explores optimization strategies for the GRU neural 

network such as dropout, gradient clipping and stacking ensembles of neural layers amongst others. The 

Recurrent Neural Networks (RNNs) are suited for classification and prediction problems based on time-series 

data. It has proven a challenging task for an ordinary RNN to learn long sequences leading to the invention of 

two other variants: Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU). Whereas both of 

these compare well on most learning tasks, the structure of a LSTM is more complex with three gates and in 

effect has to compute and keep the cell state (Ct). This makes GRU simpler to implement and typically 

converges faster making it more appropriate for online learning. The results of experiments indicate an 

improved convergence rate and better performance guarantees of the GRU over LSTM for typical regression 

tasks. 
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1. INTRODUCTION 

The origin of modern stateful deep neural networks 

such as Long Short Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) is the Recurrent 

Neural Network (RNN) appropriate for regression 

modeling of deep learning tasks such as prediction 

and classification of time-series data. The primary 

distinction between a typical deep neural network 

such as a Convolution Neural Network (CNN) and 

a RNN is that rather than completely feed-forward 

connections, a recurrent network might have 

connections that feed back into prior layers (or into 

the same layer) facilitating RNNs to maintain 

memory of past inputs and model problems in time, 

Aditya Rawal [1]. Figure 1 below shows a typical 

RNN. RNNs can be unfolded in time and trained 

with standard back-propagation algorithm or its 

variant, the back-propagation through time (BPTT) 

as indicated in figure 2.   

However, during back propagation, in an ordinary 

recurrent neural network, the gradient shrinks as it 

back propagates through time – a phenomenon 

typically referred to as the ‘vanishing gradient’. 

This has the effect of reducing the gradient value 

such that it eventually becomes extremely small, 

thus inhibiting learning. The end effect is for such 

a network to forget state in longer sequences, thus 

having a short-term memory. This led to the 

invention of LSTM and GRU that have abilities to 

model longer sequences. Whereas LSTM memory 

cell contains three gates, GRU has two gates: an 

update gate and a reset gate, getting rid of the output 
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gate present in the LSTM model making it much 

more computationally efficient than LSTM.  

 

 

 

 

 

 

 

 

 

 

Fig. 1: A typical RNN (Source: Self) 

The training algorithm, commonly BPTT, 

optimizes these weights based on the resulting 

network output error. For many applications, the 

GRU has performance similar to the LSTM, but 

being simpler means fewer weights and faster 

execution. The update gate indicates how much of 

the previous cell contents to maintain. The reset 

gate defines how to incorporate the new input with 

the previous cell contents. A GRU can model a 

standard RNN simply by setting the reset gate to 1 

and the update gate to 0. Figure 2 below is a typical 

representation of a GRU cell. 

 

Figure 2: GRU Cell (Source: Self) 

These gates can learn which data in a sequence is 

important to keep or throw away. By doing that, it 

can pass relevant information down the long chain 

of sequences to make predictions. Almost all state 

of the art results based on recurrent neural networks 

are commonly achieved with these two networks. 

LSTM’s and GRU’s are found in speech 

recognition, speech synthesis and text generation 

among other modern machine learning tasks, 

Apeksha Nagesh Shewalkar [3]. 

2. MATHEMATICAL GRU MODEL 

Based on the GRU cell in figure 2 above we can 

unfold the structure in order to define a 

mathematical model representing the network. The 

unfolded GRU cell is represented by figure 3 next 

page.  

 

Figure 3: Unfolding a GRU (Source: Self) 

The key idea of GRUs is that the gradient chains do 

not vanish due to the length of sequences. This is 

done by allowing the model to pass values 

completely through the cells. The model is defined 

by the following set of equations: 

zt=σ(Wzxt+Uzht−1+bz)    

rt=σ(Wrxt+Urht−1+br)   (1)  

~ht=tan-h(Whxt+Uhht−1∘rt+bh)   

ht=(1–zt)∘ht–1+zt∘~ht     

The input to hidden connections is parametrized by 

a weight matrix U, hidden-to-hidden recurrent 

connections parametrized by a weight matrix W and 

hidden-to-output by weight matrix V with a bias 

vectors b. In the definitions, ∘ represents 

the Hadamard product, for element-wise 

multiplication; σ(x) is the Sigmoid function that has 

the effect of squishing values between 0 and 1 – 

useful in updating or forgetting data as any number 

multiplied by 0 is 0, causing values to disappears or 

be “forgotten”. Equally, multiplying a number by 1 

retains the value hence propagating that value 

forward into other layers in the network. A tan-h 
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function ensures that the values stay between -1 and 

1, thus regulating the output of the neural network.  

zt functions as a filter for the previous state. If it is 

low (near 0), then a substantial amount of the 

previous state value is reused. The size of the input 

vectors at the current state xt has less influence on 

the output. If zt is high, then the output at the current 

step is largely influenced by the current input xt, and 

less by the size of the hidden layer vectors from the 

previous state ht−1. rt functions as forget gate (or 

reset gate) hence allowing the cell to forget certain 

information of the state. 

3. RELATED RESEARCH 

With its better comparative computational power 

compared to its earlier derivatives, a typical GRU 

neural network is normally used to model streams 

of fast data such as those found in online deep 

learning as well as other resource-critical 

applications. Several research studies approach the 

optimization of the classical GRU from different 

angles. In their separate studies in batch 

normalization of RNNs and LSTM networks, 

C´esar L. et al., [5] and Tim Cooijmans et al., [8] 

confirmed that normalized neworks out-perform 

the un-normalized ones in convergence rates.  

Improved results of path-normalized RNNs were 

reported by Behnam Neyshabur et al., [6] for 

rectified linear unit (ReLU). 

Weight initialization was reported to improve the 

performance of an LSTM network Quoc V. Le et 

al., [15]. Re-inforced learning was experimented 

for an LSTM and found to exhibit average 

performance on a corpus of songs database Natasha 

Jaques et al., [14]. The professor forcing algorithm 

was experimented by Alex Lamb et al., [11] and 

found to out-perform teacher forcing on RNNs. 

C´esar L. et al., [5] performed a dropout experiment 

on a typical LSTM and found it to have 

improvements over other networks. 

The experimental results of feature pre-training on 

TimeNet was reported by Apeksha Nagesh 

Shewalkar [3] and and found to compare well with 

most networks with improved convergence rates 

and parameter tuning. David Krueger et al., [9] 

experimented on zone-out and dropout 

regularization techniques for regular RNNs on a 

MNIST dataset and found them to exhibit 

improvements on the chosen task. While reporting 

on an optimization technique based on adaptive 

learning rate Kingma D. P. and Ba J. L [13] claimed 

that adaptive learning was better suited for training 

recurrent networks as compared to gradient 

descent. In their work, Bao W et al., [4] constructed 

a time-series model based on stacked of 

autoencoders for the LSTM network and reported 

improvements over regular networks. 

Outside optimization, several research studies have 

reported on modeling the time series problem. 

Dymitr Ruta et al., [22], carried research in time 

series ensembles while Tamal Datta Chaudhuri et 

al., [17] experimented on model based approach to 

time series modeling. The works of Enzo Busseti et 

al., [10] and Thiyanga S Talagala et al., [18] 

extended deep learning research for time series 

tasks in their individual studies. The results of a 

time series experiment are reported by G’abor 

Petneh’azi [11] and that of a multi-dimensional 

time series using GRUs are reported by Yifan Guo 

et al., [19]. 

4. OUR APPROACH 

Our approach in tuning the Gated Recurrent Unit 

(GRU) network is geared towards improving its 

representation power at the same time reaping from 

its efficient computational load. 

The tuning activity involved: 

1. Improving its representational power. 

Theoretically, it is possible to improve the 

representational power of a neural network 

using ensembles, Jasmine Collins et al., 

[12]. In our work, we experiment on this 

through stacked ensembles of a basic GRU 

network. Figure 4 below demonstrates the 

architecture of the stacked GRU ensemble. 
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Figure 4: Stacked GRU Architecture (Source: Self) 

From the figure above, the input of each GRU unit 

in the recurrent layer is the output of the hidden 

layer of the upper layer GRU unit changing the 

equations in 1 to: 

 

 

 (2) 

 

2. Improving its learning abilities through a 

careful selection of the activation function. 

In their reported study, Chigozie Enyinna 

Nwankpa et al., [7] emphasizes on the 

importance of using the right activation 

functions for any given task. In our case, the 

Sigmoid and hyperbolic tangent (tan-h) were 

selected. Sigmoid typically constraints 

values to [0,1] while tan+h moderates to a 

scale of [-1,+1]. The two equations are 

shown in figure 5 below: 

 

Figure 5: Activation functions (Source: Self) 

Sigmoid: σ(x)=
1

(1+exp⁡(−𝑥))
 (3)   

Tan-h(x) = 
exp⁡(𝑥)−exp⁡(−𝑥)

exp(𝑥)+exp⁡(−𝑥)
 (4)   

3. Application of gradient clipping and 

recurrent layer dropout regularization 

strategies. One method of taming the 

vanishing gradient as well as the exploding 

gradient problem is gradient clipping, 

Sekitoshi Kanai et al., [16]. Another 

typically applied technique is dropout 

regularization on recurrent layers, 

Srivastava N. [20]. These techniques were 

added to improve the generalization power 

of the network. The diagram in figure 6 

below demonstrates dropout effect in a 

neural network. 

 

Figure 6: Dropout Effect in Neural Network 

(Source: [21]) 

5.  EXPERIMENT  

5.1 Introduction 

In this section, we present the experimental setup 

that includes the task description in 5.2, the dataset 

used in 5.3, the Deep Machine Learning (DML) 

platform selected in 5.4 and the experimental setup 

in 5.5. 

5.2  Task Description 

The DML task selected for this study is the 

regression modeling of time series data 

representing the number of airline passengers 

arriving at an international airport. This is a 

prediction problem where given a year and a month, 

Sigmoid 

Tan-h 
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the task is to predict the number of international 

airline passengers arriving at an airport in units of 

1,000. The data was collected over a period of 144 

months. The time series prediction is phrased as a 

regression problem where given the number of 

passengers (in units of thousands) this month, last 

month and previous months, we determine the 

number of passengers the following month. 

The initial pre-processing step is to convert the 

given dataset into the required window of several 

months in the past. For purposes of the experiment, 

a window of three (3) months was selected as it was 

found to optimize the results. In this regard, the first 

column contains four (4) months’ (t-3) passenger 

count before the current month. Subsequently, t-2, 

t-1 and t represent the remaining window period up 

to the present month. The next month’s (t+1) 

passenger count, is the target prediction. For the 

sake of this experiment, a combination of the 

various reported enhancement techniques for a 

typical GRU are selected and the performance 

measures of accuracy and root mean squared error 

(RMSE) examined.  

5.3 Dataset 

The dataset used for this experiment is publicly 

available for free from the DataMarket webpage as 

a .CSV downloadable file with the filename 

“international-airline-passengers.csv“. 

5.4 Deep Learning Platform 

The selected development platform consisted of a 

set of Python DML libraries and frameworks 

available for the experiment under the permissive 

MIT license namely: Keras and Tensorflow. 

Tensorflow is one of the two numerical backend 

platforms in Python that provide the basis for Deep 

Learning research and development. Keras runs on 

Python 2.7 or 3.5 and can seamlessly execute on 

Graphical Processing Units (GPUs) and Central 

Processing Units (CPUs) based on available 

hardware the underlying frameworks.  

 

5.5 Experiment 

As noted earlier, the time series problem was 

phrased as a regression problem with a window size 

of three (3) recent time steps that were used to make 

the prediction for the next time step given the 

current time step. In this case the input variables are 

t-3, t-2, t-1, t and the output variable is t+1. The 

code below was used import all of the functions and 

classes used to model this problem in the Science 

Python (SciPy) environment within the Keras deep 

learning library. 

# Importing the base Neural Network (i.e. GRU) 

import numpy 

import matplotlib.pyplot as plt 

import pandas 

import math 

from keras.models import Sequential 

from keras.layers import GRU  

Algorithm 1: Importing the base Neural Network 

With time series data, the sequence of values is 

important. The method that was used for purposes 

of stratified cross validation was to split the ordered 

dataset into train and test datasets. This was 

necessary in order get an idea of the skill of the 

model on new unseen data. The code below was 

used to calculate the index of the split point and 

separates the data into the training dataset with two 

thirds (2/3) or roughly 67% of the available 

observations used to train the model, leaving the 

remaining one third (1/3) or roughly 33% for 

testing the model. 

# split into train and test sets 

size_Train = int(len(dataset) * 0.67) 

size_Test = len(dataset) - size_Train 

train_Set, test_Set = dataset[0:size_Train,:], 

dataset[size_Train:len(dataset),:] 

Algorithm 2: Splitting dataset 
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Next a function to create a new dataset was defined 

in accordance with the window size as described 

above. The function takes two arguments, the 

dataset which is a Python Number array that we 

want to convert into a dataset and the look-

back which is the number of previous time steps to 

use as input variables to predict the next time 

period. This has the role to create a dataset where X 

is the number of passengers at a given time (t) and 

Y is the number of passengers at the next time (t + 

1). The value of the look-back argument was set to 

three (3) to conform to the selected window size. 

The following code was applied to reshape the 

dataset by overriding the default look-back value 

with the selected window size as below. 

# reshape dataset 

look_back = 3 

trainX, trainY = create_dataset(train_Set, 

look_back) 

testX, testY = create_dataset(test_Set, look_back) 

Algorithm 3: Reshape dataset 

The effect of the above code on the first few rows 

of the dataset is seen in table 1 below. 

Table 1: Reshaped Dataset 

 

S/No X3 X2 X1 X Y 

1 112 118 132 129 121 

2 118 132 129 121 135 

3 132 129 121 135 148 

4 129 121 135 148 148 
 

The parameters that were found to optimize the 

network capacity are a hidden layer of 4 neurons, 

an output layer of 1 neuron, 100 epochs and a batch 

size of size 2. For this experiment we define a 

variable ‘optimizer’ for the training algorithm 

which was any of the following: ADAM, 

RMSPROP, ADADELTA, ADAGRAD, SGD, 

ESGD, NADAM and ADAMAX. 

# create and fit the GRU model 

model = Sequential() 

model.add(GRU(8, input_dim=look_back, 

activation='relu')) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error',  

model.fit(trainX, trainY, epochs=100, 

batch_size=2, verbose=2) 

Algorithm 4: Fitting GRU 

Table 2: Model Summary 

________________________________________ 

Layer (type)             Output Shape          Param #    

================================== 

dense_64 (Dense)             (None, 12)                48         

dense_65 (Dense)             (None, 8)                 104        

dense_66 (Dense)             (None, 1)                 9          

==================================== 

Total params: 161 

Trainable params: 161 

Non-trainable params: 0 

________________________________________ 

Once the model is fitted, the subsequent activity is 

to estimate its performance on the train and test 

datasets. The role of this is to provide a point of 

reference when comparing new models. The 

technique applied was the Mean Squared Error 

(MSE) and the Root Mean Squared Error (RMSE) 

as illustrated in the code below. 

# Estimate model performance 

trainScore = model.evaluate(trainX, trainY, 

verbose=0) 

percTr = (1000.0-(math.sqrt(trainScore)))/10 

print('Train Score: %.2f MSE (%.2f RMSE) 

Accuracy %.2f %%' % (trainScore, 

math.sqrt(trainScore), percTr)) 

Algorithm 5: Estimate model performance 

6. RESULTS 

Finally, predictions were generated using various 

optimization choice parameters starting with the 

bare (un-optimized) GRU model for both the train 

and test datasets to get a visual indication of the 

skill of the model. Table 3 below indicates the 
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model shape and the parameter information for the 

un-optimized GRU while Figure 7 shows output 

predictions on training and test sets for the bare 

GRU. The RMSE scores for both the training and 

test scores are 23.37 and 47.71 respectively. 

Table 3: GRU Network shape and parameters 

________________________________________ 

Layer (type)         Output Shape              Param #    

====================================

=== 

gru_24 (GRU)                 (2, 4)                    72         

dense_17 (Dense)             (2, 1)                    5          

====================================

=== 

Total params: 77 

Trainable params: 77 

Non-trainable params: 0 

________________________________________ 

 

 

Figure 7: Bare GRU training and test graph 

The initial optimization step was to create a stacked 

ensemble from the base GRU network. This 

procedure gave RMSE scores of 20.39 and 60.51 

respectively for both the training and the test sets. 

Table 4 is an illustration of the network architecture 

while figure 8 is the graphical output for this 

experiment. 

 

 

 

 

Table 4: Stacked GRU ensemble architecture  

________________________________________ 

Layer (type)          Output Shape              Param #    

====================================

=== 

gru_16 (GRU)                 (2, 3, 4)                 72         

________________________________________

____ 

gru_17 (GRU)                 (2, 4)                    108        

________________________________________

____ 

dense_12 (Dense)             (2, 1)                    5          

====================================

=== 

Total params: 185 

Trainable params: 185 

Non-trainable params: 0 

________________________________________ 

 

Figure 8: Stacked GRU training and test graph 

Further, the stacked ensemble was enhanced using 

a dropout value of 0.2. This gave improved RMSE 

scores of 21.78 and 46.49 for the training and 

testing sets respectively. Table 5 illustrates this new 

network architecture while figure 9 is the resulting 

graphical output. 
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Table 5: Stacked GRU ensemble with dropout 

________________________________________

___ 

Layer (type)        Output Shape              Param #    

====================================

== 

gru_8 (GRU)                  (2, 3, 4)                 72         

________________________________________

___ 

gru_9 (GRU)                  (2, 4)                    108        

________________________________________

___ 

dropout_1 (Dropout)          (2, 4)                    0          

________________________________________

___ 

dense_8 (Dense)              (2, 1)                    5          

====================================

=== 

Total params: 185 

Trainable params: 185 

Non-trainable params: 0 

________________________________________ 

 

Figure 9: Stacked GRU with dropout training and 

test graph 

Finally, the resulting network was a further 

enhanced by clipping at 1.0. This produced mild 

improvements on the test RMSE score of 46.48 

while the training RMSE was 21.79. In table 6, the 

resulting network architecture is presented; while 

figure 10 summarizes the graphical output. 

 

 

Table 6: Stacked GRU ensemble with dropout 

_____________________________________ 

Layer type                Output Shape     Param #    

================================= 

gru_18 (GRU)                 (2, 3, 4)                 72         

gru_19 (GRU)                 (2, 4)                    108        

dropout_5 (Dropout)        (2, 4)                    0          

dense_13 (Dense)             (2, 1)                    5          

================================== 

Total params: 185 

Trainable params: 185 

Non-trainable params: 0 

_____________________________________ 

 

 

Figure 10: Enhanced GRU training and test graph 

7. SUMMARY 

7.1 Findings 

Using the performance scores given by RMSE 

scores, we can see the average error on the training 

dataset reduced from 23.37 which is approximately 

23 passengers to 21.79 which is approximately 22 

passengers (in thousands per month) on the training 

set. Similarly, the average error on the unseen test 

set dropped from 47.71 equivalent to roughly 48 

passengers to 46.48 which is approximately 47 

passengers (in thousands per month). 

7.2 Conclusion 

In this research, we have experimented on 

enhancement techniques for specialized recurrent 

neural network – the gated recurrent unit (GRU) in 

a sequence data-modeling problem. From the 



International Journal of Social Sciences and Information Technology 

ISSN 2412-0294 

Vol V Issue VIII, October 2020    

© Kirori, Ireri                                                      165   

results above, we have been able to improve the 

network capacity especially on the test dataset.  

This is a clear indication that optimization 

procedures are key to training deep machine 

learning networks.  

7.3 Future Work 

In order to take full advantage of optimization 

procedures for the stated network, it is important to 

perform further experiments on value fine-tuning as 

well as experiment on additional optimization 

techniques. Some of the notable ideas would be to 

introduce model pre-training in order to take 

advantage of transfer learning. Additionally, it 

would also be important to perform a hyper-

parameter search procedure in order to determine 

whether there other important architectural features 

that could be optimized.
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