
http://www.ijssit.com

© Kirori, Ireri 157

TOWARDS OPTIMIZATION OF THE GATED RECURRENT UNIT (GRU) FOR REGRESSION

MODELING

1* Zachary Kirori

zkirori@kyu.ac.ke

2** Edwin Ireri

eireri@kyu.ac.ke

1,2 Kirinyaga University, Kenya

Abstract: Deep Machine Learning takes place by adjusting the weights of deep neural networks – brain-like

computational structures in order to optimize a given cost function. There exists a deep learning task where

every neural model typically performs better. This paper explores optimization strategies for the GRU neural

network such as dropout, gradient clipping and stacking ensembles of neural layers amongst others. The

Recurrent Neural Networks (RNNs) are suited for classification and prediction problems based on time-series

data. It has proven a challenging task for an ordinary RNN to learn long sequences leading to the invention of

two other variants: Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU). Whereas both of

these compare well on most learning tasks, the structure of a LSTM is more complex with three gates and in

effect has to compute and keep the cell state (Ct). This makes GRU simpler to implement and typically

converges faster making it more appropriate for online learning. The results of experiments indicate an

improved convergence rate and better performance guarantees of the GRU over LSTM for typical regression

tasks.

Keywords: Deep Neural Networks, Recurrent Neural Networks, Deep Learning Optimization, Long Short

Term Memory, Gated Recurrent Unit

1. INTRODUCTION

The origin of modern stateful deep neural networks

such as Long Short Term Memory (LSTM) and

Gated Recurrent Unit (GRU) is the Recurrent

Neural Network (RNN) appropriate for regression

modeling of deep learning tasks such as prediction

and classification of time-series data. The primary

distinction between a typical deep neural network

such as a Convolution Neural Network (CNN) and

a RNN is that rather than completely feed-forward

connections, a recurrent network might have

connections that feed back into prior layers (or into

the same layer) facilitating RNNs to maintain

memory of past inputs and model problems in time,

Aditya Rawal [1]. Figure 1 below shows a typical

RNN. RNNs can be unfolded in time and trained

with standard back-propagation algorithm or its

variant, the back-propagation through time (BPTT)

as indicated in figure 2.

However, during back propagation, in an ordinary

recurrent neural network, the gradient shrinks as it

back propagates through time – a phenomenon

typically referred to as the ‘vanishing gradient’.

This has the effect of reducing the gradient value

such that it eventually becomes extremely small,

thus inhibiting learning. The end effect is for such

a network to forget state in longer sequences, thus

having a short-term memory. This led to the

invention of LSTM and GRU that have abilities to

model longer sequences. Whereas LSTM memory

cell contains three gates, GRU has two gates: an

update gate and a reset gate, getting rid of the output

http://www.ijssit.com/

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue VIII, October 2020

© Kirori, Ireri 158

gate present in the LSTM model making it much

more computationally efficient than LSTM.

Fig. 1: A typical RNN (Source: Self)

The training algorithm, commonly BPTT,

optimizes these weights based on the resulting

network output error. For many applications, the

GRU has performance similar to the LSTM, but

being simpler means fewer weights and faster

execution. The update gate indicates how much of

the previous cell contents to maintain. The reset

gate defines how to incorporate the new input with

the previous cell contents. A GRU can model a

standard RNN simply by setting the reset gate to 1

and the update gate to 0. Figure 2 below is a typical

representation of a GRU cell.

Figure 2: GRU Cell (Source: Self)

These gates can learn which data in a sequence is

important to keep or throw away. By doing that, it

can pass relevant information down the long chain

of sequences to make predictions. Almost all state

of the art results based on recurrent neural networks

are commonly achieved with these two networks.

LSTM’s and GRU’s are found in speech

recognition, speech synthesis and text generation

among other modern machine learning tasks,

Apeksha Nagesh Shewalkar [3].

2. MATHEMATICAL GRU MODEL

Based on the GRU cell in figure 2 above we can

unfold the structure in order to define a

mathematical model representing the network. The

unfolded GRU cell is represented by figure 3 next

page.

Figure 3: Unfolding a GRU (Source: Self)

The key idea of GRUs is that the gradient chains do

not vanish due to the length of sequences. This is

done by allowing the model to pass values

completely through the cells. The model is defined

by the following set of equations:

zt=σ(Wzxt+Uzht−1+bz)

rt=σ(Wrxt+Urht−1+br) (1)

~ht=tan-h(Whxt+Uhht−1∘rt+bh)

ht=(1–zt)∘ht–1+zt∘~ht

The input to hidden connections is parametrized by

a weight matrix U, hidden-to-hidden recurrent

connections parametrized by a weight matrix W and

hidden-to-output by weight matrix V with a bias

vectors b. In the definitions, ∘ represents

the Hadamard product, for element-wise

multiplication; σ(x) is the Sigmoid function that has

the effect of squishing values between 0 and 1 –

useful in updating or forgetting data as any number

multiplied by 0 is 0, causing values to disappears or

be “forgotten”. Equally, multiplying a number by 1

retains the value hence propagating that value

forward into other layers in the network. A tan-h

o0 i0

hn

h0

c0

cn

Context

layer

input layer hidden layer output layer

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue VIII, October 2020

© Kirori, Ireri 159

function ensures that the values stay between -1 and

1, thus regulating the output of the neural network.

zt functions as a filter for the previous state. If it is

low (near 0), then a substantial amount of the

previous state value is reused. The size of the input

vectors at the current state xt has less influence on

the output. If zt is high, then the output at the current

step is largely influenced by the current input xt, and

less by the size of the hidden layer vectors from the

previous state ht−1. rt functions as forget gate (or

reset gate) hence allowing the cell to forget certain

information of the state.

3. RELATED RESEARCH

With its better comparative computational power

compared to its earlier derivatives, a typical GRU

neural network is normally used to model streams

of fast data such as those found in online deep

learning as well as other resource-critical

applications. Several research studies approach the

optimization of the classical GRU from different

angles. In their separate studies in batch

normalization of RNNs and LSTM networks,

C´esar L. et al., [5] and Tim Cooijmans et al., [8]

confirmed that normalized neworks out-perform

the un-normalized ones in convergence rates.

Improved results of path-normalized RNNs were

reported by Behnam Neyshabur et al., [6] for

rectified linear unit (ReLU).

Weight initialization was reported to improve the

performance of an LSTM network Quoc V. Le et

al., [15]. Re-inforced learning was experimented

for an LSTM and found to exhibit average

performance on a corpus of songs database Natasha

Jaques et al., [14]. The professor forcing algorithm

was experimented by Alex Lamb et al., [11] and

found to out-perform teacher forcing on RNNs.

C´esar L. et al., [5] performed a dropout experiment

on a typical LSTM and found it to have

improvements over other networks.

The experimental results of feature pre-training on

TimeNet was reported by Apeksha Nagesh

Shewalkar [3] and and found to compare well with

most networks with improved convergence rates

and parameter tuning. David Krueger et al., [9]

experimented on zone-out and dropout

regularization techniques for regular RNNs on a

MNIST dataset and found them to exhibit

improvements on the chosen task. While reporting

on an optimization technique based on adaptive

learning rate Kingma D. P. and Ba J. L [13] claimed

that adaptive learning was better suited for training

recurrent networks as compared to gradient

descent. In their work, Bao W et al., [4] constructed

a time-series model based on stacked of

autoencoders for the LSTM network and reported

improvements over regular networks.

Outside optimization, several research studies have

reported on modeling the time series problem.

Dymitr Ruta et al., [22], carried research in time

series ensembles while Tamal Datta Chaudhuri et

al., [17] experimented on model based approach to

time series modeling. The works of Enzo Busseti et

al., [10] and Thiyanga S Talagala et al., [18]

extended deep learning research for time series

tasks in their individual studies. The results of a

time series experiment are reported by G’abor

Petneh’azi [11] and that of a multi-dimensional

time series using GRUs are reported by Yifan Guo

et al., [19].

4. OUR APPROACH

Our approach in tuning the Gated Recurrent Unit

(GRU) network is geared towards improving its

representation power at the same time reaping from

its efficient computational load.

The tuning activity involved:

1. Improving its representational power.

Theoretically, it is possible to improve the

representational power of a neural network

using ensembles, Jasmine Collins et al.,

[12]. In our work, we experiment on this

through stacked ensembles of a basic GRU

network. Figure 4 below demonstrates the

architecture of the stacked GRU ensemble.

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue VIII, October 2020

© Kirori, Ireri 160

Figure 4: Stacked GRU Architecture (Source: Self)

From the figure above, the input of each GRU unit

in the recurrent layer is the output of the hidden

layer of the upper layer GRU unit changing the

equations in 1 to:

 (2)

2. Improving its learning abilities through a

careful selection of the activation function.

In their reported study, Chigozie Enyinna

Nwankpa et al., [7] emphasizes on the

importance of using the right activation

functions for any given task. In our case, the

Sigmoid and hyperbolic tangent (tan-h) were

selected. Sigmoid typically constraints

values to [0,1] while tan+h moderates to a

scale of [-1,+1]. The two equations are

shown in figure 5 below:

Figure 5: Activation functions (Source: Self)

Sigmoid: σ(x)=
1

(1+exp⁡(−𝑥))
 (3)

Tan-h(x) =
exp⁡(𝑥)−exp⁡(−𝑥)

exp(𝑥)+exp⁡(−𝑥)
 (4)

3. Application of gradient clipping and

recurrent layer dropout regularization

strategies. One method of taming the

vanishing gradient as well as the exploding

gradient problem is gradient clipping,

Sekitoshi Kanai et al., [16]. Another

typically applied technique is dropout

regularization on recurrent layers,

Srivastava N. [20]. These techniques were

added to improve the generalization power

of the network. The diagram in figure 6

below demonstrates dropout effect in a

neural network.

Figure 6: Dropout Effect in Neural Network

(Source: [21])

5. EXPERIMENT

5.1 Introduction

In this section, we present the experimental setup

that includes the task description in 5.2, the dataset

used in 5.3, the Deep Machine Learning (DML)

platform selected in 5.4 and the experimental setup

in 5.5.

5.2 Task Description

The DML task selected for this study is the

regression modeling of time series data

representing the number of airline passengers

arriving at an international airport. This is a

prediction problem where given a year and a month,

Sigmoid

Tan-h

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue VIII, October 2020

© Kirori, Ireri 161

the task is to predict the number of international

airline passengers arriving at an airport in units of

1,000. The data was collected over a period of 144

months. The time series prediction is phrased as a

regression problem where given the number of

passengers (in units of thousands) this month, last

month and previous months, we determine the

number of passengers the following month.

The initial pre-processing step is to convert the

given dataset into the required window of several

months in the past. For purposes of the experiment,

a window of three (3) months was selected as it was

found to optimize the results. In this regard, the first

column contains four (4) months’ (t-3) passenger

count before the current month. Subsequently, t-2,

t-1 and t represent the remaining window period up

to the present month. The next month’s (t+1)

passenger count, is the target prediction. For the

sake of this experiment, a combination of the

various reported enhancement techniques for a

typical GRU are selected and the performance

measures of accuracy and root mean squared error

(RMSE) examined.

5.3 Dataset

The dataset used for this experiment is publicly

available for free from the DataMarket webpage as

a .CSV downloadable file with the filename

“international-airline-passengers.csv“.

5.4 Deep Learning Platform

The selected development platform consisted of a

set of Python DML libraries and frameworks

available for the experiment under the permissive

MIT license namely: Keras and Tensorflow.

Tensorflow is one of the two numerical backend

platforms in Python that provide the basis for Deep

Learning research and development. Keras runs on

Python 2.7 or 3.5 and can seamlessly execute on

Graphical Processing Units (GPUs) and Central

Processing Units (CPUs) based on available

hardware the underlying frameworks.

5.5 Experiment

As noted earlier, the time series problem was

phrased as a regression problem with a window size

of three (3) recent time steps that were used to make

the prediction for the next time step given the

current time step. In this case the input variables are

t-3, t-2, t-1, t and the output variable is t+1. The

code below was used import all of the functions and

classes used to model this problem in the Science

Python (SciPy) environment within the Keras deep

learning library.

Importing the base Neural Network (i.e. GRU)

import numpy

import matplotlib.pyplot as plt

import pandas

import math

from keras.models import Sequential

from keras.layers import GRU

Algorithm 1: Importing the base Neural Network

With time series data, the sequence of values is

important. The method that was used for purposes

of stratified cross validation was to split the ordered

dataset into train and test datasets. This was

necessary in order get an idea of the skill of the

model on new unseen data. The code below was

used to calculate the index of the split point and

separates the data into the training dataset with two

thirds (2/3) or roughly 67% of the available

observations used to train the model, leaving the

remaining one third (1/3) or roughly 33% for

testing the model.

split into train and test sets

size_Train = int(len(dataset) * 0.67)

size_Test = len(dataset) - size_Train

train_Set, test_Set = dataset[0:size_Train,:],

dataset[size_Train:len(dataset),:]

Algorithm 2: Splitting dataset

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue VIII, October 2020

© Kirori, Ireri 162

Next a function to create a new dataset was defined

in accordance with the window size as described

above. The function takes two arguments, the

dataset which is a Python Number array that we

want to convert into a dataset and the look-

back which is the number of previous time steps to

use as input variables to predict the next time

period. This has the role to create a dataset where X

is the number of passengers at a given time (t) and

Y is the number of passengers at the next time (t +

1). The value of the look-back argument was set to

three (3) to conform to the selected window size.

The following code was applied to reshape the

dataset by overriding the default look-back value

with the selected window size as below.

reshape dataset

look_back = 3

trainX, trainY = create_dataset(train_Set,

look_back)

testX, testY = create_dataset(test_Set, look_back)

Algorithm 3: Reshape dataset

The effect of the above code on the first few rows

of the dataset is seen in table 1 below.

Table 1: Reshaped Dataset

S/No X3 X2 X1 X Y

1 112 118 132 129 121

2 118 132 129 121 135

3 132 129 121 135 148

4 129 121 135 148 148

The parameters that were found to optimize the

network capacity are a hidden layer of 4 neurons,

an output layer of 1 neuron, 100 epochs and a batch

size of size 2. For this experiment we define a

variable ‘optimizer’ for the training algorithm

which was any of the following: ADAM,

RMSPROP, ADADELTA, ADAGRAD, SGD,

ESGD, NADAM and ADAMAX.

create and fit the GRU model

model = Sequential()

model.add(GRU(8, input_dim=look_back,

activation='relu'))

model.add(Dense(1))

model.compile(loss='mean_squared_error',

model.fit(trainX, trainY, epochs=100,

batch_size=2, verbose=2)

Algorithm 4: Fitting GRU

Table 2: Model Summary

__

Layer (type) Output Shape Param #

==================================

dense_64 (Dense) (None, 12) 48

dense_65 (Dense) (None, 8) 104

dense_66 (Dense) (None, 1) 9

====================================

Total params: 161

Trainable params: 161

Non-trainable params: 0

__

Once the model is fitted, the subsequent activity is

to estimate its performance on the train and test

datasets. The role of this is to provide a point of

reference when comparing new models. The

technique applied was the Mean Squared Error

(MSE) and the Root Mean Squared Error (RMSE)

as illustrated in the code below.

Estimate model performance

trainScore = model.evaluate(trainX, trainY,

verbose=0)

percTr = (1000.0-(math.sqrt(trainScore)))/10

print('Train Score: %.2f MSE (%.2f RMSE)

Accuracy %.2f %%' % (trainScore,

math.sqrt(trainScore), percTr))

Algorithm 5: Estimate model performance

6. RESULTS

Finally, predictions were generated using various

optimization choice parameters starting with the

bare (un-optimized) GRU model for both the train

and test datasets to get a visual indication of the

skill of the model. Table 3 below indicates the

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue VIII, October 2020

© Kirori, Ireri 163

model shape and the parameter information for the

un-optimized GRU while Figure 7 shows output

predictions on training and test sets for the bare

GRU. The RMSE scores for both the training and

test scores are 23.37 and 47.71 respectively.

Table 3: GRU Network shape and parameters

__

Layer (type) Output Shape Param #

====================================

===

gru_24 (GRU) (2, 4) 72

dense_17 (Dense) (2, 1) 5

====================================

===

Total params: 77

Trainable params: 77

Non-trainable params: 0

__

Figure 7: Bare GRU training and test graph

The initial optimization step was to create a stacked

ensemble from the base GRU network. This

procedure gave RMSE scores of 20.39 and 60.51

respectively for both the training and the test sets.

Table 4 is an illustration of the network architecture

while figure 8 is the graphical output for this

experiment.

Table 4: Stacked GRU ensemble architecture

__

Layer (type) Output Shape Param #

====================================

===

gru_16 (GRU) (2, 3, 4) 72

__

gru_17 (GRU) (2, 4) 108

__

dense_12 (Dense) (2, 1) 5

====================================

===

Total params: 185

Trainable params: 185

Non-trainable params: 0

__

Figure 8: Stacked GRU training and test graph

Further, the stacked ensemble was enhanced using

a dropout value of 0.2. This gave improved RMSE

scores of 21.78 and 46.49 for the training and

testing sets respectively. Table 5 illustrates this new

network architecture while figure 9 is the resulting

graphical output.

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue VIII, October 2020

© Kirori, Ireri 164

Table 5: Stacked GRU ensemble with dropout

__

Layer (type) Output Shape Param #

====================================

==

gru_8 (GRU) (2, 3, 4) 72

__

gru_9 (GRU) (2, 4) 108

__

dropout_1 (Dropout) (2, 4) 0

__

dense_8 (Dense) (2, 1) 5

====================================

===

Total params: 185

Trainable params: 185

Non-trainable params: 0

__

Figure 9: Stacked GRU with dropout training and

test graph

Finally, the resulting network was a further

enhanced by clipping at 1.0. This produced mild

improvements on the test RMSE score of 46.48

while the training RMSE was 21.79. In table 6, the

resulting network architecture is presented; while

figure 10 summarizes the graphical output.

Table 6: Stacked GRU ensemble with dropout

Layer type Output Shape Param #

=================================

gru_18 (GRU) (2, 3, 4) 72

gru_19 (GRU) (2, 4) 108

dropout_5 (Dropout) (2, 4) 0

dense_13 (Dense) (2, 1) 5

==================================

Total params: 185

Trainable params: 185

Non-trainable params: 0

Figure 10: Enhanced GRU training and test graph

7. SUMMARY

7.1 Findings

Using the performance scores given by RMSE

scores, we can see the average error on the training

dataset reduced from 23.37 which is approximately

23 passengers to 21.79 which is approximately 22

passengers (in thousands per month) on the training

set. Similarly, the average error on the unseen test

set dropped from 47.71 equivalent to roughly 48

passengers to 46.48 which is approximately 47

passengers (in thousands per month).

7.2 Conclusion

In this research, we have experimented on

enhancement techniques for specialized recurrent

neural network – the gated recurrent unit (GRU) in

a sequence data-modeling problem. From the

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue VIII, October 2020

© Kirori, Ireri 165

results above, we have been able to improve the

network capacity especially on the test dataset.

This is a clear indication that optimization

procedures are key to training deep machine

learning networks.

7.3 Future Work

In order to take full advantage of optimization

procedures for the stated network, it is important to

perform further experiments on value fine-tuning as

well as experiment on additional optimization

techniques. Some of the notable ideas would be to

introduce model pre-training in order to take

advantage of transfer learning. Additionally, it

would also be important to perform a hyper-

parameter search procedure in order to determine

whether there other important architectural features

that could be optimized.

REFERENCES

[1] Aditya R. (2018). Discovering Gated Recurrent

Neural Network Architectures. PhD

Dissertation

[2] Amit A. & Shubham P. (2017). Evaluation of

Gated Recurrent Neural Networks on Deep

Sentence Classification. International Journal

of Computer Science Trends and Technology

(IJCST) – Vol 5 Issue 4. Retrieved:

http://www.ijcstjournal.org/volume-5/issue-

4/IJCST-V5I4P26.pdf

[3] Apeksha N. (2018). Comparion of RNN, LSTM

and GRU on Speech Recognition Data. MSc

Dissertation.

[4] Bao W, Yue J. & Rao Y. (2017). A deep learning

framework for financial time series using

stacked autoencoders and long-short term

memory. PLoS ONE 12(7): e0180944.

https://doi.org/10.1371/journal.pone.018094

4

[5] Behnam N., Yuhuai W., Ruslan S. & Srebro N.

(2016). Path-Normalized Optimization of

Recurrent Neural Networks with ReLU

Activations. arXiv:1605.07154v1 [cs.LG]

[6] C´esar L., Pereyra G., Brakel P., Zhang Y.,

Bengio Y. (2015).Batch Normalized Recurrent

Neural Networks. arXiv:1510.01378v1

[stat.ML]

[7] Chigozie E., Ijomah W., Gachagan A. & Marshall

S. (2018). Activation Functions: Comparison

of Trends in Practice and Research for Deep

Learning. arXiv:1811.03378v1 [cs.LG]

[8] Cooijmans T., Ballas, N., César L., Ça˘glar G., &

Courville A. (2017). Recurrent Batch

Normalization. arXiv:1603.09025v5 [cs.LG]

[9] David K. et al., (2017). Zoneout: regularizing

rnns by randomly Preserving hidden

activations. arXiv:1606.01305v4 [cs.NE]

[10] Enzo B., Osband I, & Scott Wong. (2012). Deep

Learning for Time Series Modeling. CS 229

Final Project Report.

[11] G’abor P. (2019). Recurrent Neural Networks

for Time Series Forecasting.

arXiv:1901.00069v1 [cs.LG]

Proceedings of Machine Learning Research 95:97-

112, 2018 ACML

[12] Jasmine C., Jascha S. & Sussillo D. (2017).

Capacity And Trainability In Recurrent

Neural Networks. Published as a conference

paper at ICLR 2017. arXiv:1611.09913v3

[stat.ML]

[13] Kingma D. P., & Ba J. L., (2015). Adam: A

Method for Stochastic Optimization,

Published as a conference paper at ICLR

Priyanka G., Pankaj M., Lovekesh V. &

Gautam S. (2016). Using Features from Pre-

International Journal of Social Sciences and Information Technology

ISSN 2412-0294

Vol V Issue VIII, October 2020

© Kirori, Ireri 158

trained TimeNet for Clinical Predictions.

Under review as a conference paper at ICLR

[14] Natasha J., Shixiang G., Richard E., Douglas E.

(2017). Tuning recurrent neural networks

with reinforcement Learning. Under review as

a conference paper at ICLR

[15] Quoc V. L., Navdeep J., Hinton G. (2015). A

Simple Way to Initialize Recurrent Networks

of Rectified Linear Units.

arXiv:1504.00941v2 [cs.NE]

[16] Sekitoshi K., Yasuhiro F., Sotetsu I. (2017).

Preventing Gradient Explosions in Gated

Recurrent Units. 31st Conference on Neural

Information Processing Systems, Long Beach,

CA, USA

[17] Tamal D. & Chaudhuri I. (2016). Artificial

Neural Network and Time Series Modeling

Based Approach to Forecasting the Exchange

Rate in a Multivariate Framework. Journal of

Insurance and Financial Management, Vol. 1,

Issue 5, 92-123

[18] Thiyanga S., Rob J. & Athanasopoulos G.

(2018). Meta-learning how to forecast time

series. Working paper. Retrieved:

http://business.monash.edu/econometrics-

and-businessstatistics/research/publications

[19] Yifan G. et al., (2018). Multidimensional Time

Series Anomaly Detection: A GRU-based

Gaussian Mixture Variational Autoencoder

Approach. Proceedings of Machine Learning

Research 95:97-112

[20] Srivastava N., Hinton G., Krizhevsky A.,

Sutskever I. & Salakhutdinov R. (2014).

Dropout: A Simple Way to Prevent Neural

Networks from Overfitting. Journal of

Machine Learning Research. (15)1929-1958

